Code No.: 11114 S N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. I-Semester Supplementary Examinations, August-2023

Calculus

(Common to all branches)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question $Part-A (10 \times 2 = 20 \text{ Marks})$	N.A.	T	~~	
1.	Write the statement of D'Alembert Ratio test.	M		CO	PO
2.		2	1	1	1,2,1
	Show that the series $\sum_{n=1}^{\infty} \left[\frac{1}{n(n+1)} \right]$ is convergent.	2	1	1	1,2,1
3.	Using Maclaurin's series expand e^{sinx} up to second degree.	2	2	2	1 2 1
4.	Find the radius of curvature at origin for the curve				1,2,1
	$y-x=x^2+2xy+y^2.$	2	2	2	1,2,12
5.	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $z = \log(x^2 + y^2)$.	2	1	3	1,2,12
6.	Find any two stationary points of the function	2	1	2	
	$f(x,y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x.$	2	1	3	1,2,12
7.	Show that the position vector \bar{r} is irrotational vector	12	1		1010
8.	Find the normal vector to the surface $\emptyset = x^3 - y^3 + 3xyz$ at			4	1,2,12
	(1,2,3). $y + 3xyz$ at	2	2	4	1,2,12
9.	Change the order of integration of $I = \int_{-a}^{a} \int_{0}^{\sqrt{a^2 - y^2}} f(x, y) dx dy$.	2	2	5	1,2,12
10.	Find the Jacobian of the polar coordinates.	2	1	5	1 2 12
	Part-B $(5 \times 8 = 40 Marks)$		•		1,2,12
11. a)	Test for the convergence of the series $\sum_{n=1}^{\infty} \sqrt[3]{(n^3+1)} - n$.	4	2	1	1,2,12
b)	Discuss the convergence of the series $x - \frac{x^2}{4} + \frac{x^3}{9} - \frac{x^4}{16} + \dots$	4	3	1	1,2,12
12. a)	Find the radius of curvature at $\left(\frac{1}{4}, \frac{1}{4}\right)$ on the curve $\sqrt{x} + \sqrt{y} = 1$.	4	1	2	1,2,12
	Show that the equation of the evolute of the parabola $y^2 = 4ax$ is $4(x-2a)^3 = 27ay^2$.	4	3	2	1,2,12
3. a)	If $u = tan^{-1} \left[\frac{2xy}{x^2 - y^2} \right]$ then Prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.	4	2	3	1,2,12
b)	A rectangular box open at the top is to have a volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.	4	4	3	1,2,12

14. a)	Find the directional derivative of the function $f = x^{2} - y^{2} + 2z^{2}$ at the point $P = (1, 2, 3)$ in the direction of the line PQ .	4	3	4	1,2,12
	where $Q = (5, 0, 4)$.				
b)	A Fluid motion is given by	4	4	4	1,2,12
	$\overline{v} = (y \sin z - \sin x)\overline{i} + (x \sin z + 2yz)\overline{j} + (xy \cos z + y^2)\overline{k}$ is this motion is irrotational? If so, find the velocity potential \emptyset such that $\overline{v} = \nabla \emptyset$.				
15. a)	Evaluate $\iint_R xy(x+y)dxdy$, where R is the region bounded by the curves $y=x^2$ and $y=x$.	4	3	5	1,2,12
b)	Apply the Green's theorem to evaluate	4	4	5	1,2,12
	$\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is the region bounded by the triangle				
	x = 0, y = 0 and $x + y = 1$.				
16. a)	Test for the convergence of the series	4	2	1	1,2,12
	$\left(\frac{2^2}{1^2} - \frac{2}{1}\right)^{-1} + \left(\frac{3^3}{2^3} - \frac{3}{2}\right)^{-2} + \left(\frac{4^4}{3^4} - \frac{4}{3}\right)^{-3} + \dots$				
b)	Find the Centre of Curvature of $xy(x + y) = 2$ at $(1, 1)$ and hence find the Circle of Curvature.	4	2	2	1,2,12
17.	Answer any two of the following:				
a)	If $u = x^2 + y^2 + z^2$ and $x = e^{2t}$, $y = e^{2t} cos3t$, $z = e^{2t} sin3t$	4	2	3	1,2,12
	then Find $\frac{du}{dt}$ as total derivative and verify the result by direct substitution.				
b)	Define Jacobian of function of two variables and evaluate $\iint e^{x^2+y^2} dx dy$ over the first quadrant of the circle $x^2+y^2=1$ by change into polar coordinates.	4	3	4	1,2,12
c)	Find the work done in moving a particle in the force field	4	4	5	1,2,12
	$\bar{F} = (x^2 - y^2 + x)i - (2xy + y)j$ in xy-plane along the curve defined by $y^2 = x$, from $(0,0)$ to $(1,1)$.				

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	35%
iii)	Blooms Taxonomy Level – 3 & 4	45%

& Sem